−25×35+52−35×16
−23×35+52−35×16
=35×−23+52−35×16
|bycommutativityofmultiplication
=35×−23−35×16+52
|bycommutativityofaddition
=35×(−23−16)+52
|bydistributivity
=35×(−4−16)+52
=35×(−56)+52=−36+52
=−12+52=(−1)+52=42=2.
25×(−37)−16×32+114×25
25×(−37)−16×32+114×25
=25×(−37)−16×32+25×114
|bycommutativityofmultiplication
=25×(−37)+25×114−16×32
|bycommutativityofaddition
=25×{(−37)+114}−16×32
|bydistributivity
=25×{(−6)+114}−16×32
=25×{−514}−16×32=−17−14
=−4−728=−1128
28
Additiveinverseof28is−28.
−59
Additiveinverseof−59is59.
−6−5
−6−5=65
Additiveinverseof−6−5is−65
2−9
Additiveinverseof2−9is29
19−6
Additiveinverseof19−6is196
x=1115
LHS=−(−x)
=−(−1115)=1115
=x=RHS
x=−1317
LHS=−(−x)
=−{−(−1317)}
=−1317=x=RHS
−13
Themultiplicativeinverseof−13is−113.
−1319
Themultiplicativeinverseof−139is−1913.
15
Themultiplicativeinverseof15is5.
−58×−37
−58×−37=(−5)×(−3)8×7=1556
Therefore,themultiplicativeinverseof
−58×−37is5615
−1×−25
−1×−25=(−1)×(−2)5=25
Therefore,themultiplicativeinverseof
−1×−25is52.
−1
Themultiplicativeinverseof−1is−1.
|(−1)×(−1)=1
1 is the multiplicative identity
Commutativity of multiplication
Multiplicative inverse.
Reciprocal of −716is−167
Now,
613×−167=6×(−16)13×7=−9691
Associativity.
−118=−98
Now, 89×−98=−1≠1
So, No; 89 is not the multiplicative inverse of −118(=−98) because the product of89 and −118(=−98)is not 1.
Yes; 0.3 is the multiplicative inverse of 103 because
310×103=3×1010×3=3030=1
(i) The rational number ‘0’ does not have a reciprocal.
(ii) The rational numbers 1 and (-1) are equal to their own reciprocals.
(iii) The rational number 0 is equal to its
(i) Zero has no reciprocal.
(ii) The numbers 1 and -1 are their own reciprocals.
(iii) The reciprocal of – 5 is −15
(iv) Reciprocal of 1x, wherex≠0 is x.
(v) The product of two rational numbers is always a rational number
(vi) The reciprocal of a positive rational number is positive.